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Abstract—Closed form analytical expressions for displacements and 
stresses at any point of a homogeneous, orthotropic, perfectly elastic 
half-space with rigid boundary caused by two-dimensional seismic 
sources are obtained. The method consists of first finding the integral 
expressions for a homogeneous, orthotropic, perfectly elastic half-
space from the corresponding expressions for an unbounded medium 
by applying suitable boundary conditions at the interface and then 
evaluating the integrals analytically. 
 
Keywords: Rigid boundary, Static deformation, Orthotropic half-
space. 

1. INTRODUCTION 

Generally, earthquakes are along geological faults which are 
surfaces of material discontinuity in the earth. To study the 
effect of faulting at a material discontinuity, many 
investigators considered the two half-space model. Steketee 
(1958a, b) [1-2] applied the elasticity theory of dislocations. 
Steketee dealt with a semi-infinite, non-gravitating, isotropic 
and homogenous medium. Homogeneity means that the 
medium is uniform throughout, whereas isotropy specifies that 
the elastic properties of the medium are independent of 
direction. Maruyama (1966) [6] calculated all sets of Green’s 
function for obtaining displacements and stresses around faults 
in a half space. Freund and Barnett (1971) [3] obtained two 
dimensional surface deformation due to dip-slip faulting in a 
uniform half-space, using the theory of analytic functions of a 
complex variable. Singh and Garg (1986) [11] obtained the 
integral expressions for the Airy stress function in an 
unbounded medium due to various two-dimensional seismic 
sources. Singh et. al (1991) [12] followed a similar procedure 
to obtain closed form analytical expression for the 
displacements and stresses at any point of either of two 
homogenous, isotropic, perfectly elastic half-spaces in welded 
contact due to two-dimensional sources. 

Using the concept of orthotropic media, Singh (1986) [10], 
Garg and Singh (1987) [4], Pan (1989a) [7] studied the static 
deformation of a transversely isotropic multilayered half-space 
by surface loads. The problem of the static deformation of a 
transversely isotropic multilayered half-space by buried 
sources has been discussed by Pan (1989b) [8]. Static 
deformation of an orthotropic multilayered elastic half-space 
by two-dimensional surface loads has been investigated by 
Garg et al. (1991) [5]. Rani et al. (1991) [9] obtained the 
displacements and stresses at any point of a uniform half-
space due to two-dimensional buried sources. Rani et al 
(2009) [13]obtained the closed-form expressions for the elastic 
residual field caused by a long dip-slip fault of finite width 
located in an isotropic half-space any point isotropic half-
space in welded contact with orthotropic half-space. Godara et 
al. (2014) [16] derived the results for stresses and 
displacements due to two-dimensional seismic sources 
embedded in an isotropic half-space in smooth contact with an 
orthotropic half-space. Godara et al. (2014) [19] give the 
results for static deformation due to a long tensile fault of 
finite width in an isotropic half-space welded with an 
orthotropic half-space. 

Singh et al. (2011) [14] obtained analytical expressions for 
stresses at an arbitrary point of homogenous, isotropic 
perfectly elastic half-space with rigid boundary caused by a 
long tensile fault of finite width. Malik et al. (2012,13),[15, 
18] obtained the closed-form expressions for displacement and 
stress field for a uniform half-space with rigid boundary. 
Sahrawat et al. (2014) [19], obtained analytical expressions for 
stresses and displacements at an arbitrary point of 
homogenous, isotropic perfectly elastic half-space with rigid 
boundary caused by a long dip-slip fault of finite width. There 
is no literature for deformation of orthotropic half-space with 
rigid boundary and also our Earth’s upper part is made up of 
rigid materials, so we consider a model that consists of a 
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dislocation in a homogeneous, orthotropic, perfectly elastic 
half-space in contact with a rigid half-space. This model is 
useful when the medium on the other side of the material 
discontinuity is very hard. We study the static deformation of a 
homogeneous, orthotropic, perfectly elastic half-space with 
rigid boundary caused by two-dimensional seismic sources. 

2. THEORY 

Let the Cartesian co-ordinates be denoted by (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡

1 2 3( , , )x x x  with z-axis vertically upwards. Consider an 
orthotropic elastic medium, with co-ordinate planes coinciding 
with the axis of symmetry and one plane of symmetry being 
horizontal, the stress-strain relation in matrix form is  

⎣
⎢
⎢
⎢
⎢
⎡
𝑝𝑝11
𝑝𝑝22
𝑝𝑝33
𝑝𝑝23
𝑝𝑝31
𝑝𝑝12⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13
𝑐𝑐12 𝑐𝑐22 𝑐𝑐23
𝑐𝑐13 𝑐𝑐23 𝑐𝑐33

 
0  0  0
0  0  0
 0  0  0 

0 0 0
0 0 0
0 0 0

 
𝑐𝑐44  0 0
 0 𝑐𝑐55 0
 0  0 𝑐𝑐66⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑒𝑒11
𝑒𝑒22
𝑒𝑒33

2𝑒𝑒23
2𝑒𝑒31
2𝑒𝑒12⎦

⎥
⎥
⎥
⎥
⎤

  (1)  

where, 𝑝𝑝𝑖𝑖𝑖𝑖  are the components of stress-tensor, 𝑒𝑒𝑖𝑖𝑖𝑖  are the 
components of strain-tensor, and 𝑐𝑐𝑖𝑖𝑖𝑖  are elastic constants of the 
medium.   

A transversely isotropic elastic medium, with z-axis 
coinciding with the axis of symmetry, is a particular case of an 
orthotropic elastic medium for which     𝑐𝑐22 = 𝑐𝑐11,  𝑐𝑐23 =
𝑐𝑐13, 𝑐𝑐55 = 𝑐𝑐44,  𝑐𝑐66 = 1

2
(𝑐𝑐11 − 𝑐𝑐12) 

and the number of independent elastic constants reduces from 
nine to five. When the medium is isotropic 

𝑐𝑐11 = 𝑐𝑐22 = 𝑐𝑐33 = 𝜆𝜆 + 2𝜇𝜇,  

 𝑐𝑐12 = 𝑐𝑐13 = 𝑐𝑐23 = 𝜆𝜆, 𝑐𝑐44 = 𝑐𝑐55 = 𝑐𝑐66 = 𝜇𝜇  

where, 𝜆𝜆 and 𝜇𝜇 are the Lame’s constants.  

We consider a two dimensional approximation in which 
displacement component 1 2 3, ,u u u  are independent of x so 
that 𝜕𝜕/𝜕𝜕𝑥𝑥 ≡ 0. Under this assumption the plane strain 
problem 1( 0)u =  and anti-strain problem 2( 0u =  and 

3 0)u =  are decoupled and therefore, can be solved 
separately. The plane strain problem for an orthotropic 
medium can be solved in terms of the Airy 
stress function 𝑈𝑈 such that Garg et al (1991)  

𝑝𝑝22  =
𝜕𝜕2 U
𝜕𝜕𝑧𝑧2 ,𝑝𝑝33 =

𝜕𝜕2 U
𝜕𝜕𝑦𝑦2 , 

𝑝𝑝23 = −
𝜕𝜕2 U
𝜕𝜕𝑦𝑦𝜕𝜕𝑧𝑧

    (2) 

�𝑎𝑎2  
𝜕𝜕2

𝜕𝜕𝑦𝑦2 +
𝜕𝜕2

𝜕𝜕𝑧𝑧2��𝑏𝑏
2  
𝜕𝜕2

𝜕𝜕𝑦𝑦2 +
𝜕𝜕2

𝜕𝜕𝑧𝑧2�𝑈𝑈 = 0 (3) 

𝑎𝑎2 + 𝑏𝑏2  = (𝑐𝑐22𝑐𝑐33−𝑐𝑐23
2 −2𝑐𝑐23𝑐𝑐44 )

𝑐𝑐33𝑐𝑐44
,𝑎𝑎2𝑏𝑏2 = c22

c33
 (4) 

Let there be a line source parallel to the 𝑥𝑥-axis passing through 
the point (0, 0, h). As shown by Singh and Garg (1986) [11], 
the Airy stress function 𝑈𝑈0 for a line source parallel to the x-
axis passing through the point (0, 0, h) in an unbounded 
orthotropic medium can be expressed in the form. 

𝑈𝑈0 = ∫ ��𝐿𝐿0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑀𝑀0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ |� sin𝑎𝑎𝑦𝑦 +∞
0

𝑃𝑃0e𝑎𝑎𝑎𝑎𝑧𝑧−ℎ+𝑄𝑄0e𝑏𝑏𝑎𝑎𝑧𝑧−ℎcos𝑎𝑎𝑦𝑦𝑎𝑎−1𝑑𝑑𝑎𝑎,   (5) 

where, 𝐿𝐿0,𝑀𝑀0,  𝑃𝑃0, 𝑄𝑄0 are the source co-efficients for the 
source lying in the orthotropic half-space. 

For a line source parallel to the x-axis acting at the point (0, 0, 
h) of medium (z ≥ 0) the Airy stress function in orthotropic 
half-space is a solution of Eq.(3) and may be taken to the form 
(assuming 𝑎𝑎 ≠ 𝑏𝑏) 

 𝑈𝑈 =  𝑈𝑈0 + � [(𝐿𝐿e𝑎𝑎𝑎𝑎𝑧𝑧 + 𝑀𝑀e𝑏𝑏𝑎𝑎𝑧𝑧 ) sin 𝑎𝑎𝑦𝑦
∞

0
+ (𝑃𝑃e𝑎𝑎𝑎𝑎𝑧𝑧 + 𝑄𝑄e𝑏𝑏𝑎𝑎𝑧𝑧 ) cos𝑎𝑎𝑦𝑦]𝑎𝑎−1𝑑𝑑𝑎𝑎,  (6) 

The constants 𝐿𝐿,𝑀𝑀,𝑃𝑃,𝑄𝑄 etc. are to be determined from the 
boundary conditions. 

The displacements for the orthotropic medium are given by 
Garg et al., (1991) [5] 

𝑢𝑢2 =
1
∆
�(𝑐𝑐33𝑝𝑝22 − 𝑐𝑐23𝑝𝑝33)𝑑𝑑𝑦𝑦, 

𝑢𝑢3 =
1
∆
�(𝑐𝑐22𝑝𝑝33 − 𝑐𝑐23𝑝𝑝22)𝑑𝑑𝑧𝑧, (7) 

where, 
∆= 𝑐𝑐22𝑐𝑐33 − 𝑐𝑐23

2     (8) 

From equations (2), (6), (7), the stresses and the displacements 
are found to be 

 𝑝𝑝22 = � ��𝑎𝑎2𝐿𝐿0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑏𝑏2𝑀𝑀0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ | + 𝑎𝑎2𝐿𝐿e𝑎𝑎𝑎𝑎𝑧𝑧
∞

0
+ 𝑏𝑏2𝑀𝑀e𝑏𝑏𝑎𝑎𝑧𝑧 ) sin𝑎𝑎𝑦𝑦
+ �𝑎𝑎2𝑃𝑃0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑏𝑏2𝑄𝑄0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ |

+ 𝑎𝑎2𝑃𝑃e𝑎𝑎𝑎𝑎𝑧𝑧
+ 𝑏𝑏2𝑄𝑄e𝑏𝑏𝑎𝑎𝑧𝑧 ) cos𝑎𝑎𝑦𝑦�𝑎𝑎 𝑑𝑑𝑎𝑎  (9)  
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𝑝𝑝23 = � ��∓(𝑎𝑎𝐿𝐿0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑏𝑏𝑀𝑀0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ |) + 𝑎𝑎𝐿𝐿e𝑎𝑎𝑎𝑎𝑧𝑧
∞

0
+ 𝑏𝑏𝑀𝑀e𝑏𝑏𝑎𝑎𝑧𝑧 ) cos𝑎𝑎𝑦𝑦
+ �±(𝑎𝑎𝑃𝑃0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑏𝑏𝑄𝑄0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ |) + 𝑎𝑎𝑃𝑃e𝑎𝑎𝑎𝑎𝑧𝑧

+ 𝑏𝑏𝑄𝑄e𝑏𝑏𝑎𝑎𝑧𝑧 ) sin𝑎𝑎𝑦𝑦�𝑎𝑎 𝑑𝑑𝑎𝑎  (10) 

𝑝𝑝33 = −� ��𝐿𝐿0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑀𝑀0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ | + 𝐿𝐿e𝑎𝑎𝑎𝑎𝑧𝑧
∞

0
+ 𝑀𝑀e𝑏𝑏𝑎𝑎𝑧𝑧 ) sin 𝑎𝑎𝑦𝑦
+ �𝑃𝑃0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑄𝑄0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ | + 𝑃𝑃e𝑎𝑎𝑎𝑎𝑧𝑧

+ 𝑄𝑄e𝑏𝑏𝑎𝑎𝑧𝑧 ) cos𝑎𝑎𝑦𝑦�𝑎𝑎 𝑑𝑑𝑎𝑎  (11) 

𝑢𝑢2 = � �−�𝑟𝑟1𝐿𝐿0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑟𝑟2𝑀𝑀0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ | + 𝑟𝑟1𝐿𝐿e𝑎𝑎𝑎𝑎𝑧𝑧
∞

0
+ 𝑟𝑟2𝑀𝑀e𝑏𝑏𝑎𝑎𝑧𝑧 ) cos𝑎𝑎𝑦𝑦
+ �𝑟𝑟1𝑃𝑃0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑟𝑟2𝑄𝑄0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ | + 𝑟𝑟1𝑃𝑃e𝑎𝑎𝑎𝑎𝑧𝑧

+ 𝑟𝑟2𝑄𝑄e𝑏𝑏𝑎𝑎𝑧𝑧 ) sin 𝑎𝑎𝑦𝑦� 𝑑𝑑𝑎𝑎  (12) 

𝑢𝑢3 = −� ��±(𝑠𝑠1𝐿𝐿0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑠𝑠2𝑀𝑀0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ |) + 𝑠𝑠1𝐿𝐿e𝑎𝑎𝑎𝑎𝑧𝑧
∞

0
+ 𝑠𝑠2𝑀𝑀e𝑏𝑏𝑎𝑎𝑧𝑧 ) sin 𝑎𝑎𝑦𝑦
+ �±(𝑠𝑠1𝑃𝑃0e𝑎𝑎𝑎𝑎 |𝑧𝑧−ℎ | + 𝑠𝑠2𝑄𝑄0e𝑏𝑏𝑎𝑎 |𝑧𝑧−ℎ |)
+ 𝑠𝑠1𝑃𝑃e𝑎𝑎𝑎𝑎𝑧𝑧 + 𝑠𝑠2𝑄𝑄e𝑏𝑏𝑎𝑎𝑧𝑧 ) cos𝑎𝑎𝑦𝑦� 𝑑𝑑𝑎𝑎 (13) 

Where,    

 𝑟𝑟1 =
𝑐𝑐33𝑎𝑎2 + 𝑐𝑐23

∆
, 𝑟𝑟2 =

𝑐𝑐33𝑏𝑏2 +  𝑐𝑐23

∆
, 

 𝑠𝑠1 =
𝑐𝑐23𝑎𝑎 + 𝑐𝑐22

𝑎𝑎2∆
, 𝑠𝑠2 =

𝑐𝑐23𝑏𝑏 + 𝑐𝑐22

𝑏𝑏2∆
, 

∆ = (𝑐𝑐22𝑐𝑐33 − 𝑐𝑐23
2 ),   (14) 

It is noticed from appendix for source coefficients that the 
coefficients 𝐿𝐿0,𝑀𝑀0,  𝑃𝑃0, 𝑄𝑄0 might have different values for 
𝑧𝑧 > ℎ and 𝑧𝑧 < ℎ; let 𝐿𝐿−,𝑀𝑀−,𝑃𝑃−, and 𝑄𝑄− be the values of 
𝐿𝐿0,𝑀𝑀0,  𝑃𝑃0, and 𝑄𝑄0 respectively, valid for 𝑧𝑧 < ℎ. 

We assume that the surface of the half-space z ≥ 0 is with 
rigid boundary. Therefore, the boundary conditions are 

𝑢𝑢2 = 0 and 𝑢𝑢3= 0 at z = 0    (15) 

 Using equations (12), (13) and (15), we will get the following 
system of equations: 

𝑟𝑟1𝐿𝐿−𝑒𝑒𝑎𝑎𝑎𝑎ℎ + 𝑟𝑟2𝑀𝑀−𝑒𝑒𝑏𝑏𝑎𝑎ℎ + 𝑟𝑟1𝐿𝐿 + 𝑟𝑟2𝑀𝑀 = 0, 
−𝑠𝑠1𝐿𝐿−𝑒𝑒𝑎𝑎𝑎𝑎ℎ − 𝑠𝑠2𝑀𝑀−𝑒𝑒𝑏𝑏𝑎𝑎ℎ + 𝑠𝑠1𝐿𝐿 + 𝑠𝑠2𝑀𝑀 = 0, 
𝑟𝑟1𝑃𝑃−𝑒𝑒𝑎𝑎𝑎𝑎ℎ + 𝑟𝑟2𝑄𝑄−𝑒𝑒𝑏𝑏𝑎𝑎ℎ + 𝑟𝑟1𝑃𝑃 + 𝑟𝑟2𝑄𝑄 = 0, 
−𝑠𝑠1𝑃𝑃−𝑒𝑒𝑎𝑎𝑎𝑎ℎ − 𝑠𝑠2𝑄𝑄−𝑒𝑒𝑏𝑏𝑎𝑎ℎ + 𝑠𝑠1𝑃𝑃 + 𝑠𝑠2𝑄𝑄 = 0, (16)    
Solving the system for L, M, P and Q, we get 

𝐿𝐿 = 𝑡𝑡1𝐿𝐿−𝑒𝑒𝑎𝑎𝑎𝑎ℎ + 𝑡𝑡3𝑀𝑀−𝑒𝑒𝑏𝑏𝑎𝑎ℎ , 
𝑀𝑀 = −𝑡𝑡2𝐿𝐿−𝑒𝑒𝑎𝑎𝑎𝑎ℎ − 𝑡𝑡1𝑀𝑀−𝑒𝑒𝑏𝑏𝑎𝑎ℎ , 
𝑃𝑃 = 𝑡𝑡1𝑃𝑃−𝑒𝑒𝑎𝑎𝑎𝑎ℎ + 𝑡𝑡3𝑄𝑄−𝑒𝑒𝑏𝑏𝑎𝑎ℎ , 
𝑄𝑄 = −𝑡𝑡2𝑃𝑃−𝑒𝑒𝑎𝑎𝑎𝑎ℎ − 𝑡𝑡1𝑄𝑄−𝑒𝑒𝑏𝑏𝑎𝑎ℎ  (17) 

where, 

𝑡𝑡1 =
𝑟𝑟1𝑠𝑠2 + 𝑠𝑠1𝑟𝑟2

𝑟𝑟2𝑠𝑠1 − 𝑟𝑟1𝑠𝑠2
, 𝑡𝑡2 =

2𝑟𝑟1𝑠𝑠1

𝑟𝑟2𝑠𝑠1 − 𝑟𝑟1𝑠𝑠2
,  

 𝑡𝑡3 =
2𝑟𝑟2𝑠𝑠2

𝑟𝑟2𝑠𝑠1 − 𝑟𝑟1𝑠𝑠2
    (18) 

Putting the values of the constants 𝐿𝐿1,𝑀𝑀1,𝑃𝑃1, etc. in Eqs. (10) 
and (11), we get the integral expressions for the Airy stress 
function in the two media. These integrals can be evaluated 
analytically using the standard integrals given in appendix. 
The displacements and stresses can be obtained similarly. 
Using the notation (𝑧𝑧 ≠ ℎ). 

𝑅𝑅1
2 = 𝑦𝑦2 + 𝑎𝑎2(𝑧𝑧 − ℎ)2,𝑅𝑅2

2 = 𝑦𝑦2 + 𝑏𝑏2(𝑧𝑧 − ℎ)2, 

𝑆𝑆1
2 = 𝑦𝑦2 + 𝑎𝑎2(𝑧𝑧 + ℎ)2, 𝑆𝑆2

2 = 𝑦𝑦2 + 𝑎𝑎2(𝑧𝑧 + ℎ)2, 

𝑇𝑇1
2 = 𝑦𝑦2 + (𝑎𝑎𝑧𝑧 + 𝑏𝑏ℎ)2,𝑇𝑇2

2 = 𝑦𝑦2 + (𝑏𝑏𝑧𝑧 + 𝑎𝑎ℎ)2, (19) 

The final results are given below. 

𝑈𝑈 = 𝐿𝐿0 𝑡𝑡𝑎𝑎𝑡𝑡−1 �−
𝑦𝑦

𝑎𝑎|𝑧𝑧 − ℎ|� + 𝑀𝑀0 𝑡𝑡𝑎𝑎𝑡𝑡−1 �−
𝑦𝑦

𝑏𝑏|𝑧𝑧 − ℎ|�

− 𝑃𝑃0 𝑙𝑙𝑡𝑡 𝑅𝑅1 − 𝑄𝑄0 𝑙𝑙𝑡𝑡 𝑅𝑅2

+ 𝐿𝐿− �𝑡𝑡1 𝑡𝑡𝑎𝑎𝑡𝑡−1 �−
𝑦𝑦

𝑎𝑎(𝑧𝑧 + ℎ)
�

− 𝑡𝑡2 𝑡𝑡𝑎𝑎𝑡𝑡−1 �−
𝑦𝑦

(𝑏𝑏𝑧𝑧 + 𝑎𝑎ℎ)
�� 

+𝑀𝑀− �−𝑡𝑡1 tan−1 �−
𝑦𝑦

𝑏𝑏(𝑧𝑧 + ℎ)
� + 𝑡𝑡3 tan−1 �−

𝑦𝑦
(𝑎𝑎𝑧𝑧 + 𝑏𝑏ℎ)

��

− 𝑃𝑃−[𝑡𝑡1 ln 𝑆𝑆1 − 𝑡𝑡2 ln𝑇𝑇2]  
+ 𝑄𝑄−[𝑡𝑡1 ln 𝑆𝑆2 − 𝑡𝑡3 ln𝑇𝑇1] (20) 
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We have derived the generalised expressions for stresses and 
displacements for an orthotropic half-space with rigid 
boundary due to any seismic- source lying in it. Knowing the 
seismic co-efficients ( for the source lying in the orthotropic 
half-space) 𝐿𝐿0,𝑀𝑀0,𝑃𝑃0,𝑄𝑄0 we can find out the stresses and 
displacements for orthotropic half-space and can explore the 
results for various half-spaces numerically and graphically. 
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